skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vyas, Manasi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. This work highlights how Pd–O arrangements and particle sizes impact primary H2O2selectivities and yields in its direct synthesis. 
    more » « less
  3. Recently, considerable attention has been paid to the stabilization of atomic platinum (Pt) catalysts on desirable supports in order to reduce Pt consumption, improve the catalyst stability, and thereafter enhance the catalyst performance in renewable energy devices such as fuel cells and zinc-air batteries (ZABs). Herein, we rationally designed a novel strategy to stabilize atomic Pt catalysts in alloyed platinum cobalt (PtCo) nanosheets with trapped interstitial fluorine (SA-PtCoF) for ZABs. The trapped interstitial F atoms in the PtCoF matrix induce lattice distortion resulting in weakening of the Pt–Co bond, which is the driving force to form atomic Pt. As a result, the onset potentials of SA-PtCoF are 0.95 V and 1.50 V for the oxygen reduction and evolution reactions (ORR and OER), respectively, superior to commercial Pt/C@RuO 2 . When used in ZABs, the designed SA-PtCoF can afford a peak power density of 125 mW cm −2 with a specific capacity of 808 mA h g Zn −1 and excellent cyclability over 240 h, surpassing the state-of-the-art catalysts. 
    more » « less